Sunday, April 16, 2017

Big Data vs. Data Science vs. Data Analytics

Data Science: Dealing with unstructured and structured data, Data Science is a field that comprises of everything that related to data cleansing, preparation, and analysis.

Data Science is the combination of statistics, mathematics, programming, problem solving, capturing data in ingenious ways, the ability to look at things differently, and the activity of cleansing, preparing, and aligning the data.

In simple terms, it is the umbrella of techniques used when trying to extract insights and information from data.

Big Data: Big Data refers to humongous volumes of data that cannot be processed effectively with the traditional applications that exist. The processing of Big Data begins with the raw data that isn’t aggregated and is most often impossible to store in the memory of a single computer.

A buzzword that is used to describe immense volumes of data, both unstructured and structures, Big Data inundates a business on a day-to-day basis. Big Data is something that can be used to analyze insights which can lead to better decision and strategic business moves.

The definition of Big Data, given by Gartner is, “Big data is high-volume, and high-velocity and/or high-variety information assets that demand cost-effective, innovative forms of information processing that enable enhanced insight, decision making, and process automation”.
Data Analytics: Data Analytics the science of examining raw data with the purpose of drawing conclusions about that information.

Data Analytics involves applying an algorithmic or mechanical process to derive insights. For example, running through a number of data sets to look for meaningful correlations between each other.

It is used in a number of industries to allow the organizations and companies to make better decisions as well as verify and disprove existing theories or models.

The focus of Data Analytics lies in inference, which is the process of deriving conclusions that are solely based on what the researcher already knows.

The applications of each field

Applications of Data Science:
  • Internet search: Search engines make use of data science algorithms to deliver best results for search queries in fraction of seconds.
  • Digital Advertisements: The entire digital marketing spectrum uses the data science algorithms - from display banners to digital billboards. This is the mean reason for digital ads getting higher CTR than traditional advertisements.
  • Recommender systems: The recommender systems not only make it easy to find relevant products from billions of products available but also adds a lot to user experience. A lot of companies use this system to promote their products and suggestions in accordance to the user’s demands and relevance of information. The recommendations are based on the user’s previous search results.
Applications of Big Data:
  • Big Data for financial services: Credit card companies, retail banks, private wealth management advisories, insurance firms, venture finds, and institutional investment banks use big data for their financial services. The common problem among them all is the massive amounts of multi structured data living in multiple disparate systems which can be solved by big data. Thus big data is used in a number of ways like:
  • Customer analytics
  • Compliance analytics
  • Fraud analytics
  • Operational analytics
  • Big Data in communications: Gaining new subscribers, retaining customers, and expanding within current subscriber bases are top priorities for telecommunication service providers. The solutions to these challenges lie in the ability to combine and analyze the masses of customer generated data and machine generated data that is being created every day. 
  • Big Data for Retail: Brick and Mortar or an online e-tailer, the answer to staying the game and being competitive is understanding the customer better to serve them. This requires the ability to analyze all the disparate data sources that companies deal with every day, including the weblogs, customer transaction data, social media, store branded credit card data, and loyalty program data.
Applications of Data Analysis:
  • Healthcare: The main challenge for hospitals with cost pressures tightens is to treat as many patients as they can efficiently, keeping in mind the improvement of quality of care. Instrument and machine data is being used increasingly to track as well as optimize patient flow, treatment, and equipment use in the hospitals. It is estimated that there will be a 1% efficiency gain that could yield more than $63 billion in the global health care savings.
  • Travel: Data analytics is able to optimize the buying experience through the mobile/ web log and the social media data analysis. Travel sights can gain insights into the customer’s desires and preferences. Products can be up-sold by correlating the current sales to the subsequent browsing increase browse-to-buy conversions via customized packages and offers. Personalized travel recommendations can also be delivered by data analytics based on social media data.  
  • Gaming: Data Analytics helps in collecting data to optimize and spend within as well as across games. Game companies gain insight into the dislikes, the relationships, and the likes of the users.
  • Energy Management: Most firms are using data analytics for energy management, including smart-grid management, energy optimization, energy distribution, and building automation in utility companies. The application here is centered on the controlling and monitoring of network devices, dispatch crews, and manage service outrages. Utilities are given the ability to integrate millions of data points in the network performance and lets the engineers to use the analytics to monitor the network. 

The skills you require


To become a Data Scientist:
  • Education: 88% have a Master’s Degree and 46% have PhDs
  • In-depth knowledge of SAS and/or R: For Data Science, R is generally preferred.
  • Python coding: Python is the most common coding language that is used in data science along with Java, Perl, C/C++.
  • Hadoop platform: Although not always a requirement, knowing the Hadoop platform is still preferred for the field. Having a bit of experience in Hive or Pig is also a huge selling point.
  • SQL database/coding: Though NoSQL and Hadoop have become a major part of the Data Science background, it is still preferred if you can write and execute complex queries in SQL.
  • Working with unstructured data: It is most important that a Data Scientist is able to work with unstructured data be it on social media, video feeds, or audio.
To become a Big Data professional:
  • Analytical skills: The ability to be able to make sense of the piles of data that you get. With analytical abilities, you will be able to determine which data is relevant to your solution, more like problem solving.
  • Creativity: You need to have the ability to create new methods to gather, interpret, and analyze a data strategy. This is an extremely suitable skill to possess.
  • Mathematics and statistical skills: Good, old fashioned “number crunching”. This is extremely necessary, be it in data science, data analytics, or big data.
  • Computer science: Computers are the workhorses behind every data strategy. Programmers will have a constant need to come up with algorithms to process data into insights.
  • Business skills: Big Data professionals will need to have an understanding of the business objectives that are in place, as well as the underlying processes that drive the growth of the business as well as its profit.
To become a Data Analyst:
  • Programming skills: Knowing programming languages are R and Python are extremely important for any data analyst.
  • Statistical skills and mathematics: Descriptive and inferential statistics and experimental designs are a must for data scientists.
  • Machine learning skills
  • Data wrangling skills: The ability to map raw data and convert it into another format that allows for a more convenient consumption of the data.
  • Communication and Data Visualization skills
  • Data Intuition: it is extremely important for professional to be able to think like a data analyst.

Now let’s talk about salaries!

Though in the same domain, each of these professionals, data scientists, big data specialists, and data analysts, earn varied salaries.

The average a data scientist earns today, according to Indeed.com is $123,000 a year. According to Glassdoor, the average salary for a Data Scientist is $113,436 per year.

The average salary of a Big Data specialist according to Glassdoor is $62,066 per year.

The average salary of a data analyst according to Glassdoor is $60,476 per year.

Now that you know the differences, which one do you think is most suited for you – Data Science? Big Data? Or Data Analytics?

If you’d like to become a complete expert in Data Science or Big Data – check out our Masters Program certification training courses: the Data Scientist Masters Program and the Big Data Architect Masters Program.

With industry recommended learning paths, exclusive access to experts in the industry, hands-on project experience, and a Masters certificate on completion, these packages will give you need to excel in the fields and become an expert.




  •  






No comments:

Post a Comment

150+java interview questions and answers

Java Platform 1 . Why is Java so popular? 2 . What is platform independence? 3 . What is bytecode? 4 . Compare JDK vs JVM vs JRE 5 ....